Способ ученых Пермского Политеха и Института механики сплошных сред УрО РАН повысит прочность и долговечность металла
04.09.2023
В последнее время в мире растет интерес к исследованиям в области создания и изучения свойств алюминиевых композитов. Алюмокомпозиты производятся путем введения в алюминий армирующих (укрепляющих) частиц, благодаря которым повышаются механические свойства материала. Наряду с низкой плотностью сплав отличается высокой прочностью, устойчивостью к коррозии и резким температурным перепадам. Что делает алюмокомпозит незаменимым в различных отраслях промышленности, в том числе для изготовления деталей транспортных средств, таких, как поршни, подшипники, головки цилиндров авиационных и автомобильных двигателей. Наиболее дешевым способом введения армирующих частиц является введение их в расплав алюминия и распространение по объему металла при помощи магнитогидродинамического перемешивания. Однако в результате этого метода большое количество вводимых частиц отторгается и выбрасывается на поверхность расплава из-за сильного поверхностного натяжения.
Предложенный способ ученых Пермского Политеха и Института механики сплошных сред УрО РАН отличается тем, что армирующие частицы вводятся в жидкий алюминий в составе спрессованных таблеток и интенсивно перемешиваются бегущими и вращающимися магнитными полями. Разработка обеспечивает рост предельной прочности материала.
Статья с результатами исследования опубликована в «Инженерно-физическом журнале», № 3, 2023. Исследование проведено при финансовой поддержке Российского фонда фундаментальных исследований и Пермского края в рамках научного проекта № 19-48-590001.
Весь процесс введения частиц происходил в экспериментальной установке, которая включала в себя магнитогидродинамический перемешиватель, создававший раздельно регулируемое бегущее и вращающееся магнитное поле. Также установка содержала тигель с водоохлаждаемым дном и боковой стенкой, обогреваемой окружающим ее кольцевым нагревателем. Тигель – это огнеупорный сосуд для безопасного плавления различных материалов.
В качестве армирующего вещества ученые использовали наночастицы и микрочастицы нитрида бора (BN). При помощи прессования приготавливались таблетки диаметром 20 мм и толщиной 10-15 мм из смеси микропорошка алюминия и микро или нано порошка нитрида бора. Затем расплавленный алюминий температурой 810℃ переливался в подогретый до 600℃ тигель экспериментальной установки, где под действием бегущего и вращающегося магнитных полей генерировалось топологически сложное перемешивающее течение вливаемого алюминия. После этого в жидкий алюминий в тигле вбрасывались таблетки из алюминиевого порошка содержащие микро или нано частицы нитрида бора. Внутри алюминия таблетки растворялись, а высвободившиеся армирующие частицы разносились перемешивающим течением по всему объему жидкого алюминия. Во время перемешивания включалось охлаждение дна тигля, и происходила направленная кристаллизация слитка.
После получения слитков исследователи разделяли их на четыре части для последующего изучения. Из трех частей слитка изготовили образцы для определения удельного электрического сопротивления и механических характеристик. По четвертой части определялось распределение армирующих частиц в слитке по всему продольному сечению.
Эксперимент показал, что вводимые частицы распределились в объеме полученных слитков равномерно. Ученые сделали несколько картограмм в различных частях сечения. На них было видно, что армирующие частицы везде распределяются по объему подобно тому, как они распределяются в центральной области слитков.
– Мы исследовали механические свойства материала и его удельное электрическое сопротивление при различном процентном содержании армирующих микро и наночастиц нитрида бора. Оказалось, даже небольшое содержание микрочастиц и особенно наночастиц в алюминии ведет к возрастанию его механической прочности при сравнительно небольшом повышении электросопротивления, – поделился доктор технических наук, профессор кафедры «Прикладная физика» ПНИПУ Станислав Хрипченко.
Ученые отмечают, что предельная прочность алюминия с введенными микрочастицами нитрида бора c увеличением концентрации частиц сначала даже снизилась, но затем стала медленно расти и в итоге на предельной концентрации превысила предельную прочность исходного алюминия на 4,2%.
– Алюмокомпозиты с наночастицами и с микрочастицами несколько отличаются по физическим свойствам. При увеличении концентрации наночастиц нитрида бора (BN) в алюминии от 0 до 1,3% электросопротивление металла возросло на 4%, а предельная прочность увеличилась на 13%. В то время как увеличение концентрации микрочастиц нитрида бора (BN) в алюминии от 0 до 1,3% приводит к возрастанию электросопротивления на 6,8%, а предельной прочности – только на 4%, – объясняет профессор Станислав Хрипченко.
Ученые Пермского Политеха пришли к выводу, что армирующие микро- и наночастицы нитрида бора при помощи двунаправленного магнитогидродинамического перемешивания возможно вводить в жидкий алюминий в составе таблеток, приготовленных из смеси микропорошка алюминия с микро или нано порошком армирующих веществ. Данный способ недорог, удобен и обеспечивает рост предельной прочности материала, который используется для изготовления деталей транспортных средств авиационной и автомобильной промышленности.
Предложенный способ ученых Пермского Политеха и Института механики сплошных сред УрО РАН отличается тем, что армирующие частицы вводятся в жидкий алюминий в составе спрессованных таблеток и интенсивно перемешиваются бегущими и вращающимися магнитными полями. Разработка обеспечивает рост предельной прочности материала.
Статья с результатами исследования опубликована в «Инженерно-физическом журнале», № 3, 2023. Исследование проведено при финансовой поддержке Российского фонда фундаментальных исследований и Пермского края в рамках научного проекта № 19-48-590001.
Весь процесс введения частиц происходил в экспериментальной установке, которая включала в себя магнитогидродинамический перемешиватель, создававший раздельно регулируемое бегущее и вращающееся магнитное поле. Также установка содержала тигель с водоохлаждаемым дном и боковой стенкой, обогреваемой окружающим ее кольцевым нагревателем. Тигель – это огнеупорный сосуд для безопасного плавления различных материалов.
В качестве армирующего вещества ученые использовали наночастицы и микрочастицы нитрида бора (BN). При помощи прессования приготавливались таблетки диаметром 20 мм и толщиной 10-15 мм из смеси микропорошка алюминия и микро или нано порошка нитрида бора. Затем расплавленный алюминий температурой 810℃ переливался в подогретый до 600℃ тигель экспериментальной установки, где под действием бегущего и вращающегося магнитных полей генерировалось топологически сложное перемешивающее течение вливаемого алюминия. После этого в жидкий алюминий в тигле вбрасывались таблетки из алюминиевого порошка содержащие микро или нано частицы нитрида бора. Внутри алюминия таблетки растворялись, а высвободившиеся армирующие частицы разносились перемешивающим течением по всему объему жидкого алюминия. Во время перемешивания включалось охлаждение дна тигля, и происходила направленная кристаллизация слитка.
После получения слитков исследователи разделяли их на четыре части для последующего изучения. Из трех частей слитка изготовили образцы для определения удельного электрического сопротивления и механических характеристик. По четвертой части определялось распределение армирующих частиц в слитке по всему продольному сечению.
Эксперимент показал, что вводимые частицы распределились в объеме полученных слитков равномерно. Ученые сделали несколько картограмм в различных частях сечения. На них было видно, что армирующие частицы везде распределяются по объему подобно тому, как они распределяются в центральной области слитков.
– Мы исследовали механические свойства материала и его удельное электрическое сопротивление при различном процентном содержании армирующих микро и наночастиц нитрида бора. Оказалось, даже небольшое содержание микрочастиц и особенно наночастиц в алюминии ведет к возрастанию его механической прочности при сравнительно небольшом повышении электросопротивления, – поделился доктор технических наук, профессор кафедры «Прикладная физика» ПНИПУ Станислав Хрипченко.
Ученые отмечают, что предельная прочность алюминия с введенными микрочастицами нитрида бора c увеличением концентрации частиц сначала даже снизилась, но затем стала медленно расти и в итоге на предельной концентрации превысила предельную прочность исходного алюминия на 4,2%.
– Алюмокомпозиты с наночастицами и с микрочастицами несколько отличаются по физическим свойствам. При увеличении концентрации наночастиц нитрида бора (BN) в алюминии от 0 до 1,3% электросопротивление металла возросло на 4%, а предельная прочность увеличилась на 13%. В то время как увеличение концентрации микрочастиц нитрида бора (BN) в алюминии от 0 до 1,3% приводит к возрастанию электросопротивления на 6,8%, а предельной прочности – только на 4%, – объясняет профессор Станислав Хрипченко.
Ученые Пермского Политеха пришли к выводу, что армирующие микро- и наночастицы нитрида бора при помощи двунаправленного магнитогидродинамического перемешивания возможно вводить в жидкий алюминий в составе таблеток, приготовленных из смеси микропорошка алюминия с микро или нано порошком армирующих веществ. Данный способ недорог, удобен и обеспечивает рост предельной прочности материала, который используется для изготовления деталей транспортных средств авиационной и автомобильной промышленности.
Марина Осипова © Вечерние ведомости
Читать этот материал в источнике
Читать этот материал в источнике
Банде наркоторговцев в Екатеринбурге раздали сроки отсидки
Понедельник, 25 ноября, 22.08
На крупный штраф нарвался «Водоканал-НТ» за загрязнение рек Тагил и Исток
Понедельник, 25 ноября, 21.23
Через несколько дней екатеринбуржцы обсудят проект Основинского парка
Понедельник, 25 ноября, 19.51